Shortcuts

Source code for torcheeg.transforms.pyg.to

from typing import Callable, Dict, List, Union

import numpy as np
import torch
from scipy.signal import hilbert
from torch_geometric.data import Data

from ..base_transform import EEGTransform


[docs]class ToG(EEGTransform): r''' A transformation method for constructing a graph representation of EEG signals, the results of which are applied to the input of the :obj:`torch_geometric` model. In the graph, nodes correspond to electrodes, and edges correspond to associations between electrodes (eg, spatially adjacent or functionally connected) :obj:`TorchEEG` provides some common graph structures. Consider using the following adjacency matrices depending on the dataset (with different EEG acquisition systems): - datasets.constants.emotion_recognition.deap.DEAP_ADJACENCY_MATRIX - datasets.constants.emotion_recognition.dreamer.DREAMER_ADJACENCY_MATRIX - datasets.constants.emotion_recognition.seed.SEED_ADJACENCY_MATRIX - ... .. code-block:: python from torcheeg.transforms.pyg import ToG from torcheeg.datasets.constants import DEAP_ADJACENCY_MATRIX t = ToG(adj=DEAP_ADJACENCY_MATRIX) t(eeg=np.random.randn(32, 128))['eeg'] >>> torch_geometric.data.Data Args: adj (list): An adjacency matrix represented by a 2D array, each element in the adjacency matrix represents the electrode-to-electrode edge weight. Please keep the order of electrodes in the rows and columns of the adjacency matrix consistent with the EEG signal to be transformed. add_self_loop (bool): Whether to add self-loop edges to the graph. (default: :obj:`True`) threshold (float, optional): Used to cut edges when not None. Edges whose weights exceed a threshold are retained. (default: :obj:`None`) top_k (int, optional): Used to cut edges when not None. Keep the k edges connected to each node with the largest weights. (default: :obj:`None`) binary (bool): Whether to binarize the weights on the edges to 0 and 1. If set to True, binarization are done after topk and threshold, the edge weights that still have values are set to 1, otherwise they are set to 0. (default: :obj:`False`) complete_graph (bool): Whether to build as a complete graph. If False, only construct edges between electrodes based on non-zero elements; if True, construct variables between all electrodes and set the weight of non-existing edges to 0. (default: :obj:`False`) apply_to_baseline: (bool): Whether to act on the baseline signal at the same time, if the baseline is passed in when calling. (default: :obj:`False`) .. automethod:: __call__ ''' def __init__(self, adj: List[List], add_self_loop: bool = True, threshold: Union[float, None] = None, top_k: Union[int, None] = None, binary: bool = False, complete_graph: bool = False, apply_to_baseline: bool = False): super(ToG, self).__init__(apply_to_baseline=apply_to_baseline) self.add_self_loop = add_self_loop self.threshold = threshold self.top_k = top_k self.binary = binary self.complete_graph = complete_graph adj = torch.tensor(adj) if add_self_loop: adj = adj + torch.eye(adj.shape[0]) if not self.threshold is None: adj[adj < self.threshold] = 0 if not self.top_k is None: rows = [] for row in adj: vals, index = row.topk(self.top_k) topk = torch.zeros_like(row) topk[index] = vals rows.append(topk) adj = torch.stack(rows) if self.binary: adj[adj != 0] = 1.0 if self.complete_graph: adj[adj == 0] = 1e-6 self.adj = adj.to_sparse()
[docs] def __call__(self, *args, eeg: Union[np.ndarray, torch.Tensor], baseline: Union[np.ndarray, None] = None, **kwargs) -> Dict[str, Data]: r''' Args: eeg (np.ndarray): The input EEG signals in shape of [number of electrodes, number of data points]. baseline (torch.Tensor, optional) : The corresponding baseline signal, if apply_to_baseline is set to True and baseline is passed, the baseline signal will be transformed with the same way as the experimental signal. Returns: torch_geometric.data.Data: The graph representation data types that torch_geometric can accept. Nodes correspond to electrodes, and edges are determined via the given adjacency matrix. ''' return super().__call__(*args, eeg=eeg, baseline=baseline, **kwargs)
def apply(self, eeg: Union[np.ndarray, torch.Tensor], **kwargs) -> Data: data = Data(edge_index=self.adj._indices()) if isinstance(eeg, np.ndarray): data.x = torch.from_numpy(eeg).float() else: data.x = eeg data.edge_weight = self.adj._values() return data @property def repr_body(self) -> Dict: return dict( super().repr_body, **{ 'adj': [...], 'add_self_loop': self.add_self_loop, 'threshold': self.threshold, 'top_k': self.top_k, 'binary': self.binary, 'complete_graph': self.complete_graph })
[docs]class ToDynamicG(EEGTransform): r''' A transformation method for dynamically constructing the functional connections between electrodes according to the input EEG signals. The obtained graph structure based on functional connections can be applied to the input of the :obj:`torch_geometric` model. In the graph, nodes correspond to electrodes, and edges correspond to associations between electrodes (functionally connected) :obj:`TorchEEG` provides algorithms to dynamically calculate functional connections between electrodes: - Gaussian Distance - Absolute Pearson Correlation Coefficient - Phase Locking Value .. code-block:: python from torcheeg.transforms.pyg import ToDynamicG t = ToDynamicG(edge_func='gaussian_distance', sigma=1.0, top_k=10, complete_graph=False) t(eeg=np.random.randn(32, 128))['eeg'] >>> Data(edge_index=[2, 320], x=[32, 128], edge_weight=[320]) t = ToDynamicG(edge_func='absolute_pearson_correlation_coefficient', threshold=0.1, binary=True) t(eeg=np.random.randn(32, 128))['eeg'] >>> Data(edge_index=[2, 310], x=[32, 128], edge_weight=[310]) t = ToDynamicG(edge_func='phase_locking_value') t(eeg=np.random.randn(32, 128))['eeg'] >>> Data(edge_index=[2, 992], x=[32, 128], edge_weight=[992]) t = ToDynamicG(edge_func=lambda x, y: (x * y).mean()) t(eeg=np.random.randn(32, 128))['eeg'] >>> Data(edge_index=[2, 1024], x=[32, 128], edge_weight=[1024]) Args: edge_func (str or Callable): Algorithms for computing functional connections. You can use the algorithms provided by TorchEEG, including gaussian_distance, absolute_pearson_correlation_coefficient and phase_locking_value. Or you can use custom functions by passing a callable object containing two parameters representing the signal of the two electrodes, and other named parameters (passed in when initializing the transform), and outputs the value of the functional connection between the two electrodes. (default: :obj:`gaussian_distance`) add_self_loop (bool): Whether to add self-loop edges to the graph. (default: :obj:`True`) threshold (float, optional): Used to cut edges when not None. Edges whose weights exceed a threshold are retained. (default: :obj:`None`) top_k (int, optional): Used to cut edges when not None. Keep the k edges connected to each node with the largest weights. (default: :obj:`None`) binary (bool): Whether to binarize the weights on the edges to 0 and 1. If set to True, binarization are done after topk and threshold, the edge weights that still have values are set to 1, otherwise they are set to 0. (default: :obj:`False`) complete_graph (bool): Whether to build as a complete graph. If False, only construct edges between electrodes based on non-zero elements; if True, construct variables between all electrodes and set the weight of non-existing edges to 0. (default: :obj:`False`) apply_to_baseline: (bool): Whether to act on the baseline signal at the same time, if the baseline is passed in when calling. (default: :obj:`False`) .. automethod:: __call__ ''' def __init__(self, edge_func: Union[str, Callable] = 'gaussian_distance', add_self_loop: bool = True, threshold: Union[float, None] = None, top_k: Union[int, None] = None, binary: bool = False, complete_graph: bool = False, apply_to_baseline: bool = False, **kwargs): super(ToDynamicG, self).__init__(apply_to_baseline=apply_to_baseline) self.top_k = top_k self.threshold = threshold self.add_self_loop = add_self_loop self.binary = binary self.complete_graph = complete_graph self.edge_func = edge_func self.edge_func_list = { 'gaussian_distance': self.gaussian_distance, 'absolute_pearson_correlation_coefficient': self.absolute_pearson_correlation_coefficient, 'phase_locking_value': self.phase_locking_value } self.kwargs = kwargs def opt(self, eeg: Union[np.ndarray, torch.Tensor]) -> np.ndarray: if isinstance(eeg, torch.Tensor): eeg = eeg.numpy() func = None if hasattr(self.edge_func, '__call__'): func = self.edge_func else: valid_edge_func = list(self.edge_func_list.keys()) assert self.edge_func in valid_edge_func, f'Unimplemented calculation method {self.edge_func}, allowable selection of calculation methods include {valid_edge_func}' func = self.edge_func_list[self.edge_func] num_node = len(eeg) adj = np.zeros((num_node, num_node)) for i in range(num_node): for j in range(num_node): adj[i][j] = func(eeg[i], eeg[j], **self.kwargs) return adj def adj(self, eeg: Union[np.ndarray, torch.Tensor]) -> torch.Tensor: adj = torch.tensor(self.opt(eeg)) if self.add_self_loop: adj = adj + torch.eye(adj.shape[0]) if not self.threshold is None: adj[adj < self.threshold] = 0 if not self.top_k is None: rows = [] for row in adj: vals, index = row.topk(self.top_k) topk = torch.zeros_like(row) topk[index] = vals rows.append(topk) adj = torch.stack(rows) if self.binary: adj[adj != 0] = 1.0 if self.complete_graph: adj[adj == 0] = 1e-6 return adj.to_sparse() def gaussian_distance(self, x: np.ndarray, y: np.ndarray, sigma: float = 1.0, **kwargs): return np.exp(-np.linalg.norm(x - y, 2)**2 / (2. * sigma**2)) def absolute_pearson_correlation_coefficient(self, x: np.ndarray, y: np.ndarray, **kwargs): return np.abs(np.corrcoef(x, y)[0][1]) def phase_locking_value(self, x: np.ndarray, y: np.ndarray, **kwargs): x_hill = hilbert(x) y_hill = hilbert(y) pdt = (np.inner(x_hill, np.conj(y_hill)) / (np.sqrt(np.inner(x_hill, np.conj(x_hill)) * np.inner(y_hill, np.conj(y_hill))))) return np.angle(pdt)
[docs] def __call__(self, *args, eeg: Union[np.ndarray, torch.Tensor], baseline: Union[np.ndarray, None] = None, **kwargs) -> Dict[str, Data]: r''' Args: eeg (np.ndarray): The input EEG signals in shape of [number of electrodes, number of data points]. baseline (torch.Tensor, optional) : The corresponding baseline signal, if apply_to_baseline is set to True and baseline is passed, the baseline signal will be transformed with the same way as the experimental signal. Returns: torch_geometric.data.Data: The graph representation data types that torch_geometric can accept. Nodes correspond to electrodes, and edges are determined via the given adjacency matrix. ''' return super().__call__(*args, eeg=eeg, baseline=baseline, **kwargs)
def apply(self, eeg: Union[np.ndarray, torch.Tensor], **kwargs) -> Data: adj = self.adj(eeg) data = Data(edge_index=adj._indices()) if isinstance(eeg, np.ndarray): data.x = torch.from_numpy(eeg).float() else: data.x = eeg data.edge_weight = adj._values() return data @property def repr_body(self) -> Dict: return dict( super().repr_body, **{ 'top_k': self.top_k, 'threshold': self.threshold, 'add_self_loop': self.add_self_loop, 'binary': self.binary, 'complete_graph': self.complete_graph, 'edge_func': self.edge_func })
Read the Docs v: latest
Versions
latest
stable
v1.1.2
v1.1.1
v1.1.0
v1.0.11
v1.0.10
v1.0.9
v1.0.8.post1
v1.0.8
v1.0.7
v1.0.6
v1.0.4
v1.0.3
v1.0.2
v1.0.1
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources