Shortcuts

Source code for torcheeg.models.vae.bvae

from typing import Tuple

import torch
import torch.nn as nn


[docs]class BEncoder(nn.Module): r''' The variational autoencoder consists of two parts, an encoder, and a decoder. The encoder compresses the input into the latent space. The decoder receives as input the information sampled from the latent space and produces it as similar as possible to ground truth. The latent vector should approach the gaussian distribution supervised by KL divergence based on the variation trick. This class implement the encoder part. .. code-block:: python import torch from torcheeg.models import BEncoder encoder = BEncoder(in_channels=4) mock_eeg = torch.randn(1, 4, 9, 9) mu, logvar = encoder(mock_eeg) Args: in_channels (int): The feature dimension of each electrode. (default: :obj:`4`) grid_size (tuple): Spatial dimensions of grid-like EEG representation. (default: :obj:`(9, 9)`) hid_channels (int): The number of hidden nodes in the first convolutional layer, which is also used as the dimension of output mu and var. (default: :obj:`32`) ''' def __init__(self, in_channels: int = 4, grid_size: Tuple[int, int] = (9, 9), hid_channels: int = 64): super(BEncoder, self).__init__() self.in_channels = in_channels self.grid_size = grid_size self.hid_channels = hid_channels self.conv1 = nn.Sequential( nn.Conv2d(in_channels, hid_channels, kernel_size=3, stride=1, padding=1, bias=True), nn.BatchNorm2d(hid_channels), nn.LeakyReLU()) self.conv2 = nn.Sequential( nn.Conv2d(hid_channels, hid_channels * 2, kernel_size=3, stride=2, padding=1, bias=True), nn.BatchNorm2d(hid_channels * 2), nn.LeakyReLU()) self.conv3 = nn.Sequential( nn.Conv2d(hid_channels * 2, hid_channels * 2, kernel_size=3, stride=1, padding=1, bias=True), nn.BatchNorm2d(hid_channels * 2), nn.LeakyReLU()) self.conv4 = nn.Sequential( nn.Conv2d(hid_channels * 2, hid_channels * 4, kernel_size=3, stride=2, padding=1, bias=True), nn.BatchNorm2d(hid_channels * 4), nn.LeakyReLU()) feature_dim = self.feature_dim self.fc_mu = nn.Linear(feature_dim, self.hid_channels) self.fc_var = nn.Linear(feature_dim, self.hid_channels) @property def feature_dim(self): with torch.no_grad(): mock_eeg = torch.zeros(1, self.in_channels, *self.grid_size) mock_eeg = self.conv1(mock_eeg) mock_eeg = self.conv2(mock_eeg) mock_eeg = self.conv3(mock_eeg) mock_eeg = self.conv4(mock_eeg) return mock_eeg.flatten(start_dim=1).shape[-1]
[docs] def forward(self, x: torch.Tensor): r''' Args: x (torch.Tensor): EEG signal representation, the ideal input shape is :obj:`[n, 4, 9, 9]`. Here, :obj:`n` corresponds to the batch size, :obj:`4` corresponds to :obj:`in_channels`, and :obj:`(9, 9)` corresponds to :obj:`grid_size`. Returns: tuple[2,]: The mean and standard deviation vectors obtained by encoder. The shapes of the feature vectors are all :obj:`[n, 64]`. Here, :obj:`n` corresponds to the batch size, and :obj:`64` corresponds to :obj:`hid_channels`. ''' x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = self.conv4(x) x = x.flatten(start_dim=1) mu = self.fc_mu(x) var = self.fc_var(x) return mu, var
[docs]class BDecoder(nn.Module): r''' The variational autoencoder consists of two parts, an encoder, and a decoder. The encoder compresses the input into the latent space. The decoder receives as input the information sampled from the latent space and produces it as similar as possible to ground truth. The latent vector should approach the gaussian distribution supervised by KL divergence based on the variation trick. This class implement the decoder part. .. code-block:: python encoder = BEncoder(in_channels=4) decoder = BDecoder(in_channels=64, out_channels=4) mock_eeg = torch.randn(1, 4, 9, 9) mu, logvar = encoder(mock_eeg) std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) z = eps * std + mu fake_X = decoder(z) Args: in_channels (int): The input feature dimension (of noise vectors). (default: :obj:`64`) out_channels (int): The generated feature dimension of each electrode. (default: :obj:`4`) grid_size (tuple): Spatial dimensions of grid-like EEG representation. (default: :obj:`(9, 9)`) ''' def __init__(self, in_channels: int = 64, out_channels: int = 4, grid_size: Tuple[int, int] = (9, 9)): super(BDecoder, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.grid_size = grid_size self.deproj = nn.Sequential( nn.Linear(in_channels, in_channels * 4 * 3 * 3), nn.LeakyReLU()) self.deconv1 = nn.Sequential( nn.ConvTranspose2d(in_channels * 4, in_channels * 2, kernel_size=3, stride=2, padding=1, bias=True), nn.BatchNorm2d(in_channels * 2), nn.LeakyReLU()) self.deconv2 = nn.Sequential( nn.ConvTranspose2d(in_channels * 2, in_channels * 2, kernel_size=3, stride=1, padding=1, bias=True), nn.BatchNorm2d(in_channels * 2), nn.LeakyReLU()) self.deconv3 = nn.Sequential( nn.ConvTranspose2d(in_channels * 2, in_channels, kernel_size=3, stride=2, padding=1, bias=True), nn.BatchNorm2d(in_channels), nn.LeakyReLU()) self.deconv4 = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=True)
[docs] def forward(self, x: torch.Tensor): r''' Args: x (torch.Tensor): Given the mean and standard deviation vectors, the feature vector :obj:`z` obtained using the reparameterization technique. The shapes of the feature vector should be :obj:`[n, 64]`. Here, :obj:`n` corresponds to the batch size, and :obj:`64` corresponds to :obj:`in_channels`. Returns: torch.Tensor[n, 4, 9, 9]: the decoded results, which should have the same shape as the input noise, i.e., :obj:`[n, 4, 9, 9]`. Here, :obj:`n` corresponds to the batch size, :obj:`4` corresponds to :obj:`in_channels`, and :obj:`(9, 9)` corresponds to :obj:`grid_size`. ''' x = self.deproj(x) x = x.view(-1, self.in_channels * 4, 3, 3) x = self.deconv1(x) x = self.deconv2(x) x = self.deconv3(x) x = self.deconv4(x) return x
Read the Docs v: latest
Versions
latest
stable
v1.1.2
v1.1.1
v1.1.0
v1.0.11
v1.0.10
v1.0.9
v1.0.8.post1
v1.0.8
v1.0.7
v1.0.6
v1.0.4
v1.0.3
v1.0.2
v1.0.1
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources