Shortcuts

Source code for torcheeg.models.pyg.gin

import torch
import torch.nn as nn
import torch.nn.functional as F

from torch_geometric.nn import GINConv
from torch_geometric.data import Batch


[docs]class GIN(nn.Module): r''' A simple but effective graph isomorphism network (GIN) structure from the book of Zhang et al. For more details, please refer to the following information. - Book: Zhang X, Yao L. Deep Learning for EEG-Based Brain-Computer Interfaces: Representations, Algorithms and Applications[M]. 2021. - URL: https://www.worldscientific.com/worldscibooks/10.1142/q0282#t=aboutBook - Related Project: https://github.com/xiangzhang1015/Deep-Learning-for-BCI/blob/master/pythonscripts/4-3_GIN.py Below is a recommended suite for use in emotion recognition tasks: .. code-block:: python from torcheeg.datasets import DEAPDataset from torcheeg import transforms from torcheeg.transforms.pyg import ToG from torcheeg.datasets.constants import SEED_STANDARD_ADJACENCY_MATRIX from torcheeg.models import GIN from torch_geometric.data import DataLoader dataset = DEAPDataset(root_path='./data_preprocessed_python', offline_transform=transforms.BandDifferentialEntropy(), online_transform=ToG(SEED_STANDARD_ADJACENCY_MATRIX), label_transform=transforms.Compose([ transforms.Select('valence'), transforms.Binary(5.0), ])) model = GIN(in_channels=4, hid_channels=64, num_classes=2) x, y = next(iter(DataLoader(dataset, batch_size=64))) model(x) Args: in_channels (int): The feature dimension of each electrode. (default: :obj:`4`) hid_channels (int): The number of hidden nodes in the GRU layers and the fully connected layer. (default: :obj:`64`) num_classes (int): The number of classes to predict. (default: :obj:`2`) ''' def __init__(self, in_channels: int = 4, hid_channels: int = 64, num_classes: int = 3): super(GIN, self).__init__() self.in_channels = in_channels self.hid_channels = hid_channels self.num_classes = num_classes nn1 = nn.Sequential(nn.Linear(in_channels, hid_channels), nn.ReLU(), nn.Linear(hid_channels, hid_channels)) self.conv1 = GINConv(nn1) self.bn1 = nn.BatchNorm1d(hid_channels) nn2 = nn.Sequential(nn.Linear(hid_channels, hid_channels), nn.ReLU(), nn.Linear(hid_channels, hid_channels)) self.conv2 = GINConv(nn2) self.bn2 = nn.BatchNorm1d(hid_channels) nn3 = nn.Sequential(nn.Linear(hid_channels, hid_channels), nn.ReLU(), nn.Linear(hid_channels, hid_channels)) self.conv3 = GINConv(nn3) self.bn3 = nn.BatchNorm1d(hid_channels) self.fc1 = nn.Linear(hid_channels, hid_channels) self.fc2 = nn.Linear(hid_channels, num_classes)
[docs] def forward(self, data: Batch) -> torch.Tensor: r''' Args: data (torch_geometric.data.Batch): EEG signal representation, the ideal input shape of data.x is :obj:`[n, 62, 4]`. Here, :obj:`n` corresponds to the batch size, :obj:`62` corresponds to the number of electrodes, and :obj:`4` corresponds to :obj:`in_channels`. Returns: torch.Tensor[number of sample, number of classes]: the predicted probability that the samples belong to the classes. ''' x, edge_index, batch = data.x, data.edge_index, data.num_graphs x = x.reshape([-1, self.in_channels]) x = F.relu(self.conv1(x, edge_index)) x = self.bn1(x) x = F.relu(self.conv2(x, edge_index)) x = self.bn2(x) x = F.relu(self.conv3(x, edge_index)) x = self.bn3(x) x = x.view(batch, -1, self.hid_channels) x = x.sum(dim=1) x = F.dropout(x, p=0.3, training=self.training) x = self.fc2(x) return x
Read the Docs v: latest
Versions
latest
stable
v1.1.2
v1.1.1
v1.1.0
v1.0.11
v1.0.10
v1.0.9
v1.0.8.post1
v1.0.8
v1.0.7
v1.0.6
v1.0.4
v1.0.3
v1.0.2
v1.0.1
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources