Shortcuts

Source code for torcheeg.models.gan.bgan

from typing import Tuple

import torch
import torch.nn as nn


[docs]class BGenerator(nn.Module): r''' TorchEEG provides an EEG feature generator based on CNN architecture and GAN for generating EEG grid representations of different frequency bands based on a given class label. .. code-block:: python import torch from torcheeg.models.gan.bgan import BGenerator g_model = BGenerator(in_channels=128) z = torch.normal(mean=0, std=1, size=(1, 128)) fake_X = g_model(z) Args: in_channels (int): The input feature dimension (of noise vectors). (default: :obj:`128`) out_channels (int): The generated feature dimension of each electrode. (default: :obj:`4`) grid_size (tuple): Spatial dimensions of grid-like EEG representation. (default: :obj:`(9, 9)`) ''' def __init__(self, in_channels: int = 128, out_channels: int = 4, grid_size: Tuple[int, int] = (9, 9)): super(BGenerator, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.grid_size = grid_size self.deproj = nn.Sequential( nn.Linear(in_channels, in_channels * 4 * 3 * 3), nn.LeakyReLU()) self.deconv1 = nn.Sequential( nn.ConvTranspose2d(in_channels * 4, in_channels * 2, kernel_size=3, stride=2, padding=1, bias=True), nn.BatchNorm2d(in_channels * 2), nn.LeakyReLU()) self.deconv2 = nn.Sequential( nn.ConvTranspose2d(in_channels * 2, in_channels * 2, kernel_size=3, stride=1, padding=1, bias=True), nn.BatchNorm2d(in_channels * 2), nn.LeakyReLU()) self.deconv3 = nn.Sequential( nn.ConvTranspose2d(in_channels * 2, in_channels, kernel_size=3, stride=2, padding=1, bias=True), nn.BatchNorm2d(in_channels), nn.LeakyReLU()) self.deconv4 = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=True)
[docs] def forward(self, x: torch.Tensor): r''' Args: x (torch.Tensor): a random vector, the ideal input shape is :obj:`[n, 128]`. Here, :obj:`n` corresponds to the batch size, and :obj:`128` corresponds to :obj:`in_channels`. Returns: torch.Tensor[n, 4, 9, 9]: the generated fake EEG signals. Here, :obj:`4` corresponds to the :obj:`out_channels`, and :obj:`(9, 9)` corresponds to the :obj:`grid_size`. ''' x = self.deproj(x) x = x.view(-1, self.in_channels * 4, 3, 3) x = self.deconv1(x) x = self.deconv2(x) x = self.deconv3(x) x = self.deconv4(x) return x
[docs]class BDiscriminator(nn.Module): r''' TorchEEG provides an EEG feature generator based on CNN architecture and GAN for generating EEG grid representations of different frequency bands based on a given class label. .. code-block:: python g_model = BGenerator(in_channels=128) d_model = BDiscriminator(in_channels=4) z = torch.normal(mean=0, std=1, size=(1, 128)) fake_X = g_model(z) disc_X = d_model(fake_X) Args: in_channels (int): The feature dimension of each electrode. (default: :obj:`4`) grid_size (tuple): Spatial dimensions of grid-like EEG representation. (default: :obj:`(9, 9)`) hid_channels (int): The number of hidden nodes in the first fully connected layer. (default: :obj:`32`) ''' def __init__(self, in_channels: int = 4, grid_size: Tuple[int, int] = (9, 9), hid_channels: int = 64): super(BDiscriminator, self).__init__() self.in_channels = in_channels self.grid_size = grid_size self.hid_channels = hid_channels self.conv1 = nn.Sequential( nn.Conv2d(in_channels, hid_channels, kernel_size=3, stride=1, padding=1, bias=True), nn.BatchNorm2d(hid_channels), nn.LeakyReLU()) self.conv2 = nn.Sequential( nn.Conv2d(hid_channels, hid_channels * 2, kernel_size=3, stride=2, padding=1, bias=True), nn.BatchNorm2d(hid_channels * 2), nn.LeakyReLU()) self.conv3 = nn.Sequential( nn.Conv2d(hid_channels * 2, hid_channels * 2, kernel_size=3, stride=1, padding=1, bias=True), nn.BatchNorm2d(hid_channels * 2), nn.LeakyReLU()) self.conv4 = nn.Sequential( nn.Conv2d(hid_channels * 2, hid_channels * 4, kernel_size=3, stride=2, padding=1, bias=True), nn.BatchNorm2d(hid_channels * 4), nn.LeakyReLU()) self.proj = nn.Linear(self.feature_dim, 1) @property def feature_dim(self): with torch.no_grad(): mock_eeg = torch.zeros(1, self.in_channels, *self.grid_size) mock_eeg = self.conv1(mock_eeg) mock_eeg = self.conv2(mock_eeg) mock_eeg = self.conv3(mock_eeg) mock_eeg = self.conv4(mock_eeg) return mock_eeg.flatten(start_dim=1).shape[-1]
[docs] def forward(self, x: torch.Tensor): r''' Args: x (torch.Tensor): EEG signal representation, the ideal input shape is :obj:`[n, 4, 9, 9]`. Here, :obj:`n` corresponds to the batch size, :obj:`4` corresponds to the :obj:`in_channels`, and :obj:`(9, 9)` corresponds to the :obj:`grid_size`. Returns: torch.Tensor[n, 1]: Predicts the result of whether a given sample is a fake sample or not. Here, :obj:`n` corresponds to the batch size. ''' x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = self.conv4(x) x = x.flatten(start_dim=1) x = self.proj(x) return x
Read the Docs v: latest
Versions
latest
stable
v1.1.2
v1.1.1
v1.1.0
v1.0.11
v1.0.10
v1.0.9
v1.0.8.post1
v1.0.8
v1.0.7
v1.0.6
v1.0.4
v1.0.3
v1.0.2
v1.0.1
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources