Shortcuts

Source code for torcheeg.models.cnn.eegnet

import torch
import torch.nn as nn


class Conv2dWithConstraint(nn.Conv2d):
    def __init__(self, *args, max_norm: int = 1, **kwargs):
        self.max_norm = max_norm
        super(Conv2dWithConstraint, self).__init__(*args, **kwargs)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        self.weight.data = torch.renorm(self.weight.data, p=2, dim=0, maxnorm=self.max_norm)
        return super(Conv2dWithConstraint, self).forward(x)


[docs]class EEGNet(nn.Module): r''' A compact convolutional neural network (EEGNet). For more details, please refer to the following information. - Paper: Lawhern V J, Solon A J, Waytowich N R, et al. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces[J]. Journal of neural engineering, 2018, 15(5): 056013. - URL: https://arxiv.org/abs/1611.08024 - Related Project: https://github.com/braindecode/braindecode/tree/master/braindecode Below is a recommended suite for use in emotion recognition tasks: .. code-block:: python from torcheeg.datasets import DEAPDataset from torcheeg import transforms from torcheeg.models import EEGNet from torch.utils.data import DataLoader dataset = DEAPDataset(root_path='./data_preprocessed_python', online_transform=transforms.Compose([ transforms.To2d(), transforms.ToTensor(), ]), label_transform=transforms.Compose([ transforms.Select('valence'), transforms.Binary(5.0), ])) model = EEGNet(chunk_size=128, num_electrodes=32, dropout=0.5, kernel_1=64, kernel_2=16, F1=8, F2=16, D=2, num_classes=2) x, y = next(iter(DataLoader(dataset, batch_size=64))) model(x) Args: chunk_size (int): Number of data points included in each EEG chunk, i.e., :math:`T` in the paper. (default: :obj:`151`) num_electrodes (int): The number of electrodes, i.e., :math:`C` in the paper. (default: :obj:`60`) F1 (int): The filter number of block 1, i.e., :math:`F_1` in the paper. (default: :obj:`8`) F2 (int): The filter number of block 2, i.e., :math:`F_2` in the paper. (default: :obj:`16`) D (int): The depth multiplier (number of spatial filters), i.e., :math:`D` in the paper. (default: :obj:`2`) num_classes (int): The number of classes to predict, i.e., :math:`N` in the paper. (default: :obj:`2`) kernel_1 (int): The filter size of block 1. (default: :obj:`64`) kernel_2 (int): The filter size of block 2. (default: :obj:`64`) dropout (float): Probability of an element to be zeroed in the dropout layers. (default: :obj:`0.25`) ''' def __init__(self, chunk_size: int = 151, num_electrodes: int = 60, F1: int = 8, F2: int = 16, D: int = 2, num_classes: int = 2, kernel_1: int = 64, kernel_2: int = 16, dropout: float = 0.25): super(EEGNet, self).__init__() self.F1 = F1 self.F2 = F2 self.D = D self.chunk_size = chunk_size self.num_classes = num_classes self.num_electrodes = num_electrodes self.kernel_1 = kernel_1 self.kernel_2 = kernel_2 self.dropout = dropout self.block1 = nn.Sequential( nn.Conv2d(1, self.F1, (1, self.kernel_1), stride=1, padding=(0, self.kernel_1 // 2), bias=False), nn.BatchNorm2d(self.F1, momentum=0.01, affine=True, eps=1e-3), Conv2dWithConstraint(self.F1, self.F1 * self.D, (self.num_electrodes, 1), max_norm=1, stride=1, padding=(0, 0), groups=self.F1, bias=False), nn.BatchNorm2d(self.F1 * self.D, momentum=0.01, affine=True, eps=1e-3), nn.ELU(), nn.AvgPool2d((1, 4), stride=4), nn.Dropout(p=dropout)) self.block2 = nn.Sequential( nn.Conv2d(self.F1 * self.D, self.F1 * self.D, (1, self.kernel_2), stride=1, padding=(0, self.kernel_2 // 2), bias=False, groups=self.F1 * self.D), nn.Conv2d(self.F1 * self.D, self.F2, 1, padding=(0, 0), groups=1, bias=False, stride=1), nn.BatchNorm2d(self.F2, momentum=0.01, affine=True, eps=1e-3), nn.ELU(), nn.AvgPool2d((1, 8), stride=8), nn.Dropout(p=dropout)) self.lin = nn.Linear(self.feature_dim(), num_classes, bias=False) def feature_dim(self): with torch.no_grad(): mock_eeg = torch.zeros(1, 1, self.num_electrodes, self.chunk_size) mock_eeg = self.block1(mock_eeg) mock_eeg = self.block2(mock_eeg) return self.F2 * mock_eeg.shape[3]
[docs] def forward(self, x: torch.Tensor) -> torch.Tensor: r''' Args: x (torch.Tensor): EEG signal representation, the ideal input shape is :obj:`[n, 60, 151]`. Here, :obj:`n` corresponds to the batch size, :obj:`60` corresponds to :obj:`num_electrodes`, and :obj:`151` corresponds to :obj:`chunk_size`. Returns: torch.Tensor[number of sample, number of classes]: the predicted probability that the samples belong to the classes. ''' x = self.block1(x) x = self.block2(x) x = x.flatten(start_dim=1) x = self.lin(x) return x
Read the Docs v: latest
Versions
latest
stable
v1.1.2
v1.1.1
v1.1.0
v1.0.11
v1.0.10
v1.0.9
v1.0.8.post1
v1.0.8
v1.0.7
v1.0.6
v1.0.4
v1.0.3
v1.0.2
v1.0.1
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources