Shortcuts

Source code for torcheeg.models.cnn.ccnn

from typing import Tuple

import torch
import torch.nn as nn


[docs]class CCNN(nn.Module): r''' Continuous Convolutional Neural Network (CCNN). For more details, please refer to the following information. - Paper: Yang Y, Wu Q, Fu Y, et al. Continuous convolutional neural network with 3D input for EEG-based emotion recognition[C]//International Conference on Neural Information Processing. Springer, Cham, 2018: 433-443. - URL: https://link.springer.com/chapter/10.1007/978-3-030-04239-4_39 - Related Project: https://github.com/ynulonger/DE_CNN Below is a recommended suite for use in emotion recognition tasks: .. code-block:: python from torcheeg.datasets import DEAPDataset from torcheeg import transforms from torcheeg.datasets.constants import DEAP_CHANNEL_LOCATION_DICT from torcheeg.models import CCNN from torch.utils.data import DataLoader dataset = DEAPDataset(root_path='./data_preprocessed_python', offline_transform=transforms.Compose([ transforms.BandDifferentialEntropy(), transforms.ToGrid(DEAP_CHANNEL_LOCATION_DICT) ]), online_transform=transforms.ToTensor(), label_transform=transforms.Compose([ transforms.Select('valence'), transforms.Binary(5.0), ])) model = CCNN(num_classes=2, in_channels=4, grid_size=(9, 9)) x, y = next(iter(DataLoader(dataset, batch_size=64))) model(x) Args: in_channels (int): The feature dimension of each electrode. (default: :obj:`4`) grid_size (tuple): Spatial dimensions of grid-like EEG representation. (default: :obj:`(9, 9)`) num_classes (int): The number of classes to predict. (default: :obj:`2`) dropout (float): Probability of an element to be zeroed in the dropout layers. (default: :obj:`0.25`) ''' def __init__(self, in_channels: int = 4, grid_size: Tuple[int, int] = (9, 9), num_classes: int = 2, dropout: float = 0.5): super(CCNN, self).__init__() self.in_channels = in_channels self.grid_size = grid_size self.num_classes = num_classes self.dropout = dropout self.conv1 = nn.Sequential(nn.ZeroPad2d((1, 2, 1, 2)), nn.Conv2d(self.in_channels, 64, kernel_size=4, stride=1), nn.ReLU()) self.conv2 = nn.Sequential(nn.ZeroPad2d((1, 2, 1, 2)), nn.Conv2d(64, 128, kernel_size=4, stride=1), nn.ReLU()) self.conv3 = nn.Sequential(nn.ZeroPad2d((1, 2, 1, 2)), nn.Conv2d(128, 256, kernel_size=4, stride=1), nn.ReLU()) self.conv4 = nn.Sequential(nn.ZeroPad2d((1, 2, 1, 2)), nn.Conv2d(256, 64, kernel_size=4, stride=1), nn.ReLU()) self.lin1 = nn.Sequential( nn.Linear(self.grid_size[0] * self.grid_size[1] * 64, 1024), nn.SELU(), # Not mentioned in paper nn.Dropout2d(self.dropout) ) self.lin2 = nn.Linear(1024, self.num_classes) def feature_dim(self): return self.grid_size[0] * self.grid_size[1] * 64
[docs] def forward(self, x: torch.Tensor) -> torch.Tensor: r''' Args: x (torch.Tensor): EEG signal representation, the ideal input shape is :obj:`[n, 4, 9, 9]`. Here, :obj:`n` corresponds to the batch size, :obj:`4` corresponds to :obj:`in_channels`, and :obj:`(9, 9)` corresponds to :obj:`grid_size`. Returns: torch.Tensor[number of sample, number of classes]: the predicted probability that the samples belong to the classes. ''' x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = self.conv4(x) x = x.flatten(start_dim=1) x = self.lin1(x) x = self.lin2(x) return x
Read the Docs v: latest
Versions
latest
stable
v1.1.2
v1.1.1
v1.1.0
v1.0.11
v1.0.10
v1.0.9
v1.0.8.post1
v1.0.8
v1.0.7
v1.0.6
v1.0.4
v1.0.3
v1.0.2
v1.0.1
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources